BioLineRx Announces an Oral Presentation and Three Poster Presentations at the 63rd American Society of Hematology (ASH) Annual Meeting & Exposition
The oral presentation will elaborate on the successful results of the Company's GENESIS Phase 3 pivotal trial. The study showed highly significant and clinically meaningful results supporting the use of Motixafortide on top of G-CSF for mobilization of stem cells for subsequent collection and transplantation in patients with multiple myeloma. In addition, the poster presentations will show that extended inhibition of the CXCR4 receptor by Motixafortide results in the mobilization of high numbers of stem cells, including specific sub-populations, which were correlated with reduced time to engraftment when infused in high numbers.
The Company is also presenting findings from in-vivo and in-vitro pre-clinical studies demonstrating that Motixafortide acts as an immunomodulator by affecting the biology of regulatory T cells (Tregs), supporting biomarker findings from the Company's COMBAT Phase 2 study in pancreatic cancer patients.
"We are very pleased with the breadth of our oral and poster presentations at this year's ASH meeting, which reflect the versatility of Motixafortide as the potential backbone of promising new treatments for both hematological and solid tumor cancers," stated
Further details of the presentations are provided below.
Oral Presentation
Title: Motixafortide (BL-8040) and G-CSF Versus Placebo and G-CSF to Mobilize Hematopoietic Stem Cells for Autologous Stem Cell Transplantation in Patients with Multiple Myeloma: The GENESIS Trial
Date:
Time:
Location:
This oral presentation describes the GENESIS Phase 3 pivotal trial design, endpoints and results. The GENESIS study was a double blind, placebo controlled, multicenter trial, in which 122 patients were randomized (2:1) to receive either Motixafortide + G-CSF or placebo + G-CSF for stem cell mobilization prior to stem cell transplant in multiple myeloma patients. Total CD34+ cells/kg were analyzed on site to determine if patients mobilized to the goal and all samples were subsequently sent for assessment by a central laboratory. The number of CD34+ cells infused was determined independently by each investigator according to local practice.
The study concluded that a single administration of Motixafortide on top of G-CSF significantly increased the proportion of patients mobilizing ≥6x106 CD34+ cells/kg for stem cell transplantation (92.5%) vs G-CSF alone (26.2%) in up to two apheresis days (p<0.0001), while enabling 88.8% to collect ≥6x106 CD34+ cells/kg in just one apheresis day (vs 9.5% with G-CSF alone; p<0.0001). In addition, the median number of hematopoietic stem cells mobilized in one apheresis day with Motixafortide + G-CSF was 10.8x106 CD34+cells/kg vs 2.1x106 CD34+ cells/kg with G-CSF alone.
Poster Presentations
Title: Autologous Hematopoietic Cell Transplantation with Higher Doses of CD34+ Cells and Specific CD34+ Subsets Mobilized with Motixafortide and/or G-CSF is Associated with Rapid Engraftment – A Post-hoc Analysis of the GENESIS Trial
Date:
Time:
The CD34+ hematopoietic stem and progenitor cell (HSPC) dose infused during stem cell transplantation remains one of the most reliable clinical parameters to predict quality of engraftment. A minimum stem cell dose of 2-2.5x106 CD34+ cells/kg is considered necessary for reliable engraftment, while optimal doses of 5-6x106 CD34+ cells/kg are associated with faster engraftment, as well as fewer transfusions, infections, and antibiotic days.
An analysis was performed using pooled data from all patients in the GENESIS trial to evaluate time to engraftment based on the total number of CD34+ cells/kg infused, as well as specific numbers of CD34+ cell sub-populations infused.
The addition of Motixafortide to G-CSF enabled significantly more CD34+ cells to be collected in one apheresis (median 10.8x106 CD34+ cells/kg) compared to G-CSF alone (2.1x106 CD34+ cells/kg), as well as 3.5-5.6 fold higher numbers of hematopoietic stem cells (HSCs), multipotent progenitors (MPPs), common myeloid progenitors (CMPs) and granulocyte and macrophage progenitors (GMPs) (all p-values <0.0004). A dose response was observed with a significant correlation between faster time to engraftment and infusion of higher number of total CD34+ HSPC doses (≥6x106 CD34+ cells/kg) and combined HSC, MPP, CMP and GMP subsets. The high number of CD34+ cells/kg mobilized with Motixafortide on top of G-CSF enables the potential infusion of ≥6x106 CD34+ cells/kg, as well as cryopreservation of cells for later use.
Title: Immunophenotypic and Single-Cell Transcriptional Profiling of CD34+ Hematopoietic Stem and Progenitor Cells Mobilized with Motixafortide (BL-8040) and G-CSF Versus Plerixafor and GCSF Versus Placebo and G-CSF: A Correlative Study of the GENESIS Trial
Date:
Time:
CD34 expression remains the most common immunophenotypic cell surface marker defining human hematopoietic stem and progenitor cells (HSPCs). The addition of CXCR4 inhibitors to G-CSF has increased mobilization of CD34+ HSPCs for stem cell transplantation; yet the effect of CXCR4 inhibition, with or without G-CSF, on mobilization of specific immunophenotypic and transcriptional CD34+ HSPC subsets is not well-characterized.
Motixafortide is a novel cyclic peptide CXCR4 inhibitor with a low receptor-off rate and extended in vivo action when compared to plerixafor. GENESIS Phase 3 trial patients were prospectively randomized (2:1) to receive either Motixafortide + G-CSF or placebo + G-CSF for HSPC mobilization. Demographically similar multiple myeloma patients undergoing mobilization with plerixafor + G-CSF prior to stem cell transplant were prospectively enrolled in a separate tissue banking protocol.
Extended CXCR4 inhibition with Motixafortide + G-CSF mobilized significantly higher numbers of combined CD34+ HSCs, MPPs and CMPs compared to plerixafor + G-CSF or G-CSF alone (p<0.05). Additionally, Motixafortide + G-CSF mobilized a 10.5 fold higher number of immunophenotypically primitive CD34+ HSCs capable of broad multilineage hematopoietic reconstitution compared to G-CSF alone (p<0.0001) and similar numbers compared to plerixafor + G-CSF. Furthermore, lack of CXCR4 inhibition resulted in mobilization of more-differentiated HCSs, whereas extended CXCR4 inhibition with Motixafortide + G-CSF (but not plerixafor + G-CSF) mobilized a unique MPP-III subset expressing genes specifically related to leukocyte differentiation.
Title: The High Affinity CXCR4 Inhibitor, BL-8040, Impairs the Infiltration, Migration, Viability and Differentiation of Regulatory T Cells
Date:
Time:
This poster describes results of pre-clinical in-vivo and in-vitro studies demonstrating that Motixafortide potentially acts as an immunomodulator by affecting the biology of regulatory T cells. Motixafortide reduced the amount of infiltrating Tregs into the tumors, impaired the migration of Tregs toward CXCL12 and induced Tregs cell death. Furthermore, Motixafortide was found to inhibit the differentiation of naïve CD4 T cells toward Tregs.
About
The Company's lead program, Motixafortide (BL-8040), is a cancer therapy platform that was successfully evaluated in a Phase 3 study in stem cell mobilization for autologous bone-marrow transplantation, has reported positive results from a pre-planned pharmacoeconomic study, and is currently in preparations for an NDA submission. Motixafortide was also successfully evaluated in a Phase 2a study for the treatment of pancreatic cancer in combination with KEYTRUDA® and chemotherapy under a clinical trial collaboration agreement with MSD (
For additional information on
Various statements in this release concerning
Contact:
+1-212-915-2564
tim@lifesciadvisors.com
or
+972-54-476-4945
moran@lifesciadvisors.com
SOURCE